Functional Analysis

Bartosz Kwaśniewski

Faculty of Mathematics, University of Białystok

Lecture 7 Orthogonal projection

math.uwb.edu.pl/~zaf/kwasniewski/teaching

H – inner product space.

Def. Vectors $x, y \in H$ are orthogonal (perpendicular to each other), if $\langle x, y \rangle = 0$. We then write $x \perp y$.

Rem. $x \perp y \iff y \perp x$. And $\forall_{y \in H} x \perp y \iff x \perp x \iff x = 0$.

In a right angled triangle, the sum of the squares of the lengths of the legs is equal to the square of the length of the hypotenuse!

y x Pitagoras Hilbert

[Pythagoras' theorem]

If
$$x \perp y$$
, then $||x + y||^2 = ||x||^2 + ||y||^2$.

Proof:
$$||x + y||^2 = ||x||^2 + 2 \operatorname{Re}\langle x, y \rangle + ||y||^2$$

Rem. If $\mathbb{F} = \mathbb{R}$, then $x \perp y \iff ||x + y||^2 = ||x||^2 + ||y||^2$. **Def.** The orthogonal complement of the set $M \subseteq H$ is

$$M^{\perp} := \{ x \in H : x \perp y \text{ dla każdego } y \in M \}.$$

If $x \in M^{\perp}$, then we also write $x \perp M$. For two sets $N, M \subseteq H$ we write $N \perp M$ if $n \perp m$ for all $n \in N$ and $m \in M$.

Prop. M^{\perp} is a closed linear space.

Proof: Every $y \in H$ defines a linear functional $f_y : H \to \mathbb{F} = \mathbb{R}, \mathbb{C}$

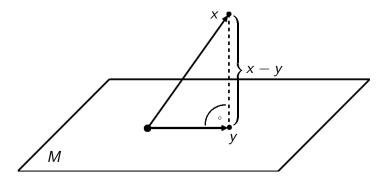
$$f_y(x) := \langle x, y \rangle, \qquad x \in H,$$

By the Schwartz inequality $|f_y(x)| = |\langle x, y \rangle| \leq ||x|| \cdot ||y||$. Hence f_y is bounded and $||f_y|| \leq ||y||$ (in fact $||f_y|| = ||y||$). Thus f_y is continuous. Accordingly, the kernel ker $f_y = f_y^{-1}(0) \subseteq H$ is a closed linear subspace. Since M^{\perp} is the intersection of such kernels:

$$M^{\perp} = \{x \in H : f_y(x) = 0 \text{ for every } y \in M\} = \bigcap_{y \in M} \ker f_y$$

it is a closed linear subspace. 🔳

Def. The orthogonal projection of a vector $x \in H$ onto a subspace $M \subseteq H$ is a vector $y \in M$ such that $x - y \perp M$.



We write then $P_M x = y$. Hence

$$P_M x = y \quad \stackrel{def}{\Longleftrightarrow} \quad y \in M \text{ and } \forall_{z \in M} \langle x - y, z \rangle = 0.$$

The orthogonal projection P_{MX} is uniquely determined!

Problem: Does orthogonal projection always exist?

Ex. (Orthogonal projection onto a one-dimensional subspace)
Let
$$M = \{\lambda y : \lambda \in \mathbb{F}\}$$
, where $y \in H \setminus \{0\}$, and let $x \in H$. Then
 $P_M x = \lambda_0 y$, where $\lambda_0 \in \mathbb{F}$ is such that $x - \lambda_0 y \perp M$. What is λ_0 ?
 $x - \lambda_0 y \perp M \iff \forall_{z \in M} \langle x - \lambda_0 y, z \rangle = 0$
 $\iff \forall_{\lambda \in \mathbb{F}} \langle x - \lambda_0 y, \lambda y \rangle = 0$
 $\iff \forall_{\lambda \in \mathbb{F}} \overline{\lambda} \cdot \langle x - \lambda_0 y, y \rangle = 0$
 $\iff \lambda_0 = \frac{\langle x, y \rangle}{\langle y, y \rangle}$.

Hence

$$P_M x = \lambda_0 y = \frac{\langle x, y \rangle}{\langle y, y \rangle} y = \frac{\langle x, y \rangle}{\|y\|^2} y.$$

This is sometimes called the **orthogonal projection** of vector x on **vector** y and is denoted by $P_y x$.

Rem. Calculating $||x - P_y x||$, the distance from x to the subspace $M = \{\lambda y : \lambda \in \mathbb{F}\}$, one obtains a proof of the Schwartz inequality.